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Abstract—Drawing inspiration from convolutional neural
networks, graph convolutional networks (GCNs) have been
implemented in various applications. Yet, the integration of
GCNs into clinical settings, particularly in the context of
complex health conditions like diabetes, remains distant. In
this paper, we introduce a genome-specific graph convolu-
tional network (Geno-GCN) with a multi-graph aggregator
to predict the risk of developing Type 2 diabetes based on
whole genome sequencing data. Geno-GCN consolidates both
positive and negative influences from graphs formulated from
diabetes risk factors. This is achieved through a negative
sample strategy combined with multi-view aggregators. We
assessed Geno-GCN using Australia’s largest genome bank
and benchmarked it against rule-based methods, bioinfor-
matics tools, and other state-of-the-art machine-learning
techniques. The results demonstrated the superior efficacy
and robustness of our method, which consistently outper-
formed competitors across all evaluation metrics. Geno-
GCN also exhibited the closest alignment with actual labels,
showcasing its potential in large population studies.

Index Terms—Genomics, graph convolutional networks,
aggregators, diabetes.

I. INTRODUCTION

Inspired by convolutional neural networks, graph con-
volutional networks (GCNs) have become prevalent in
computer vision and natural language processing tasks [1].
GCNs have proved to be valuable in this task by offering
solutions when dealing with genomic data using graph
representations and pre-defined architectures [2]. However,
their application in studying complex health conditions
like diabetes, remains limited.

Type 2 Diabetes, one of the most prevalent health
conditions, affects over 537 million individuals globally,
costing 966 billion US dollars [3]. In clinical settings,
diabetes risk prediction primarily relies on predictors such
as age, gender, ethnicity, family history, smoking status,
body mass index, hypertension, and waist circumference.
Although numerous rule-based models have been devel-
oped, only a few have found their way into clinical practice
due to issues in design, execution, and reporting. However,
owing to their practicality, rule-based risk prediction mod-
els remain the primary tool for clinicians. In Australia,
the Australian Type 2 Diabetes Risk Assessment Tool
(AUSDRISK) [4] stands as the only tool endorsed by the
Department of Health and Aged Care.

Recent advancements in genome-based disease risk
prediction have shown that whole genome sequencing
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(WGS) data holds promise for predicting diabetes. A
multi-ancestry genome-wide association study (GWAS),
which utilized WGS data from more than 180,000 patients,
was employed to determine the polygenic risk score (PRS)
[5]. This score represents the risk of developing diabetes
based on genetic markers.

In this paper, we introduce a genome-specific graph
convolutional network, termed Geno-GCN, complemented
by an innovative multi-graph aggregator, to predict the
risk of developing diabetes using WGS data. The principal
contributions of this paper are:

• We present a genome-specific GCN to analyze human
genome data for diabetes risk prediction. To the best
of our knowledge, this is the first endeavor to employ
graph representation learning specifically tailored for
genotypic data to address complex clinical needs.

• A novel aggregator has been designed to integrate
both positive and negative information from graphs
based on the associated risk factors. By incorporating
the non-neighboring nodes in the learning process,
this aggregator addresses the over-smoothing issue
and integrates critical information from risk factors,
which can positively or negatively affect diabetes
susceptibility.

• Our Geno-GCN is a potent, personalized tool for
diabetes risk prediction. Our model was evaluated
using one of the largest human genome datasets cov-
ering Australian populations. The results showed that
Geno-GCN excelled beyond traditional rule-based
and other machine-learning approaches, highlighting
its significant clinical applicability.

The remainder of this paper is structured as follows:
Section II reviews related work. Section III introduces
the dataset and elaborates on the proposed Geno-GCN
method. Section IV compares the results with other rule-
based and machine learning-based models. The efficacy
and applicability of Geno-GCN are also discussed. Lastly,
Section V offers conclusions and outlines future work.

II. LITERATURE REVIEW

A. Diabetes Risk Prediction Models

The majority of diabetes risk prediction tools utilize
clinical data. Typically, clinicians employ questionnaires
to gather pertinent information regarding basic health
conditions. They then adopt a rule-based approach to clas-
sify the risk of developing diabetes as low, intermediate,
or high. As machine learning techniques gain traction
in the medical field, numerous prediction models have
emerged, employing techniques such as logistic regression



[6], Naive Bayes [7], Support Vector Machine (SVM)
[8], ensemble methods [9], and long short-term memory
networks (LSTM) [10]. Nevertheless, few of these models
have been adopted in clinical settings due to the limited
predictive power of clinical-based risk predictors.

B. Graph Convolutional Networks and Multi-graph Ag-
gregators

By incorporating deep learning models, GCNs have
significantly improved over traditional graph embedding
methods, which often struggle with scalability and context
awareness when dealing with complex and large-scale
graphs. However, a limitation of current GCNs is their
inability to update the learning process based on inter-
actions among nodes and across multiple graphs. These
interactions often encapsulate crucial information, leading
to sub-optimal performance by these GCNs.

The aggregation between nodes and multiple graph
perspectives warrants deeper consideration in develop-
ing GCNs. As most GCNs update their representations
based on their neighbors, the negative links between non-
neighboring nodes are rarely studied. An innovative ap-
proach considering the effects of non-neighboring nodes,
referred to as negative samples, was proposed to tackle the
over-smoothing problem [11].

In real-world scenarios, graphs — represented by ob-
jects (nodes) and their relationships (edges) — become an
intuitive structure to represent data. An Adaptive Multi-
layer Aggregation GCN (AMA-GCN) was conceived to
enhance the similarity between nodes of the same type
for disease prediction [12]. Inspired by multilayer network
embedding [13] and negative samples [11], we posit that
an aggregator with negative samples could present a more
comprehensive understanding of the data.

III. MATERIALS AND METHODS

A. Dataset

TABLE I
MEDICAL GENOME REFERENCE BANK

Diabetes Gender Genotypic Phenotypic
risk data data

Low-risk Female Genetic variants height, weight
information abdominal

(n = 1901) (n = 1589) of each circumference,
High-risk Male individual calc- blood glucose,

-ulated from pressure
(n = 943) (n = 1255) .vcf files and cholesterol

Total number of participants: n = 2844

In this diabetes prediction study, we acquired prior ap-
proval for access to the Medical Genome Reference Bank
(MGRB) [14]. MGRB, comprising 4,011 participants, is
one of Australia’s largest human genome databases with
whole-genome data and an assortment of phenotypic in-
formation. The MGRB comprises healthy, older individ-
uals of European descent recruited from two Australian
community-based cohorts [15]. Given our study’s focus
on predicting diabetes risk, a substantial cohort of healthy
elderly individuals is particularly suited for this research.

After a preliminary step that filtered out missing values,
1,589 female (461 high-risk and 1128 low-risk of develop-
ing diabetes) and 1,255 male (482 high-risk and 773 low-
risk of developing diabetes) participants were chosen. As
shown in Table I, the efficacy of Geno-GCN is evaluated
with a total of 2,844 participants using the MGRB dataset.

B. Architecture of Geno-GCN

The graph representation of WGS data is character-
ized by the interconnections between Single Nucleotide
Polymorphisms (SNPs), which serve as fundamental units
representing genetic mutations. We define the graph G =
(V,E), where V = {v1, v2, ..., vi, ..., vj , ...} is the set
of vertices represented by SNPs; E denotes the set of
edges, corresponding to the linkage disequilibrium (LD).
Edge weights are presented by {X(1), X(2), ..., X(M)}.
Here, M represents the number of risk factors associated
with diabetes. The value of M is set to 6, containing
diabetes and other risk factors, including hypertension,
hyperlipidemia, body mass index, waist circumference,
and smoking status.

The input feature of Geno-GCN consists of six graphs
derived from individuals’ WGS data in relation to di-
abetes and its associated risk factors. While all graphs
maintain identical nodes, their edges differ, given that
LDs are constructed from the most recent GWAS findings
corresponding to these health conditions. The layer-wise
propagation rule for a generalized GCN is defined as:

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)) (1)

where H is the node feature matrix specific to the layer;
σ represents the non-linear activation function, chosen as
ReLU(·) = max(0, ·) ; Â denotes the modified adjacency
matrix with self-connections; D̂ is the diagonal degree
matrix; and W is the layer-specific weight matrix.

Geno-GCN addresses one primary challenge: the shared
nodes among different graphs possess multiple neighbor-
ing nodes. Traditional GCNs promote the influence of
positively correlated neighbors in the network update.
Such an approach introduces the over-smoothing issue and
contradicts domain knowledge. In genomics, some genetic
variants, termed ‘pathogenic’, have the potential to cause
diseases, while others might decrease the likelihood of
developing specific health conditions. Consequently, we
incorporate the negative samples into the network by:

x
(l)
i =

∑
j∈Ni

1√
deg(i) ·

√
deg(j)

(A(l) · xj
(l−1))

−ω
∑
j̄∈N̄i

1√
deg(i) ·

√
deg(j̄)

(A(l) · xj̄
(l−1))

(2)

where x
(l)
i is the representation of node i at layer l; Ni is

the positively correlated neighbors of node i; the negative
samples are presented as N̄i; deg(i) stands for the degree
of node i; A(l) is the adjacency matrix at layer l.

GCN’s outputs are matrices based on each risk factor.
In our diabetes risk prediction study, a multi-view aggre-
gation of the six feature matrices is added before initiating



the final classification. Motivative by multi-view CNN
[16], we employ an element-wise maximum operation
across the views to form a singular representation.

A fully connected layer with softmax is integrated to
transit from graph-based features to a dense vector, which
subsequently maps to a probability distribution, indicating
an individual’s diabetes development risk. Geno-GCN’s
final output is derived using:

Pr = softmax(WchG + b) (3)

where Pr stands for the probability distribution of the
low/high risk for developing diabetes; Wc is the weight
matrix of c possible classes; hG is the singular representa-
tion of graph features; and b is the bias vector. An overview
of our proposed Geno-GCN model is summarized in
Algorithm 1.

Algorithm 1 Geno-GCN
Input: graphs G using genotypic data
Output: risk of developing diabetes

1: Generate input features from the WGS data of the
individual

2: for each layer l do
3: for each node i at layer l do
4: Update node representations using Eq. (1);
5: end for
6: end for
7: A view pooling layer to form a unified representation;
8: A fully connected network with softmax to classify

the risk of developing diabetes;

IV. RESULTS AND DISCUSSION

We first compared Geno-GCN with the Australian
government-approved AUSDRISK and then analyzed it
against traditional machine learning methods using phe-
notypic data from MGRB. Individuals with AUSDRISK
scores below 12 were classified as low-risk, while those 12
and above were high-risk. We then calculated PRS using
genotypic data, which along with linkage disequilibrium
(LD), informed the Geno-GCN models.

While AUSDRISK and PRS models showed limited
accuracy for clinical use, being more suitable for raising
patient self-awareness, machine learning models demon-
strated improvements using non-linear methods for disease
risk prediction. However, their accuracy was capped at
70% due to their reliance on phenotypic data alone.
The Geno-GCN model surpassed these methods with an
accuracy of 75.8%, recall of 0.667, precision of 0.702,
and F1-score of 0.684. By accounting for both positive
and negative diabetes influences via the negative sam-
ple strategy, and by aggregating multi-graph WGS data
into a single domain for final decision-making via the
view pooling layers, Geno-GCN emulates the diagnostic
methodologies of medical practitioners. However, recall
and precision remain on the lower side across all models,
potentially pointing to dataset imbalance — a prevalent
issue in health-centric applications.

TABLE II
PERFORMANCE OF DIABETES RISK PREDICTION MODELS USING

MGRB DATABASE

Classification Performance evaluation metrics
model Accuracy Recall Precision F1-score

AUSDRISK 0.571 0.513 0.514 0.513
PRS 0.563 0.493 0.493 0.493

Logistic regression 0.676 0.534 0.622 0.575
Naive Bayes 0.675 0.533 0.617 0.572

SVM 0.673 0.516 0.635 0.570
Random Forest 0.673 0.521 0.619 0.565

XGBoost 0.668 0.522 0.588 0.554
LSTM 0.666 0.530 0.585 0.557

AMA-GCN 0.712 0.618 0.693 0.654
Geno-GCN: 0.725 0.620 0.695 0.656

only diabetes
Geno-GCN: 0.758 0.667 0.702 0.684

with risk factors

Evaluating the clinical practicality of Geno-GCN, an
end-to-end model for predicting the risk of complex health
conditions like diabetes, is crucial. Geno-GCN can be di-
rectly employed as a downstream prediction tool utilizing
WGS, which is increasingly becoming more affordable
and accessible. The fully connected network in the final
step of Algorithm 1 is designed to refine predictions at
the genome level, showcasing its ability to interpret the
results from a clinical standpoint.

In addition to its excellent individualized predictive per-
formance, Geno-GCN also demonstrates its utility in large
population studies. As showcased in Fig. 1, the distribution
of low-risk (green bars) and high-risk (red bars) partici-
pants is delineated by gender using the MGRB dataset.
This color-coded histogram illustrates the distribution of
the diabetes risk levels of nearly 3000 generally healthy
elderly Australians. The distribution of the risk across the
cohort is indicated by the eighth-order polynomial curve
fitting represented by the blue line. When compared with
rule-based, PRS, and conventional ML methodologies,
Geno-GCN aligns most closely with true blood glucose
level trends, presented in the bottom row of Fig. 1. This
analysis potentially offers insights into the overarching risk
of diabetes onset within the broader Australian population.

V. CONCLUSION

This paper introduced a novel genome-specific graph
convolutional network designed specifically for disease
risk prediction and tailored for genotypic data processing.
Our model integrates risk factors that either positively or
negatively impact diabetes with view pooling, culminating
in a direct risk-level prediction. Our experimental results
underscore the superiority of our model, which achieves
an accuracy of 75.8%, outperforming other methods in
all three evaluation metrics. In future research, we aim
to validate using other genomic databases and extend the
capabilities of our model to a wider range of disease risk
prediction scenarios.
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Fig. 1. A population study on diabetes utilized the MGRB data and compared four prediction models: AUSDRISK, PRS, conventional ML
(specifically logistic regression, which exhibited the highest accuracy among the conventional ML models as shown in Table II), and Geno-GCN.
The last row represents the actual blood glucose levels. The blue curve presents the eighth-order polynomial curve fitting.
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